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Particle simulation of three-dimensional convection patterns in a Rayleigh-Be´nard system

Tadashi Watanabe and Hideo Kaburaki
Research and Development Group for Numerical Experiments, Japan Atomic Energy Research Institute, Tokai-mura, Naka-

Ibaraki-ken, 319-11, Japan
~Received 11 April 1997!

The transition of convection patterns in the three-dimensional Rayleigh-Be´nard system is simulated using
the direct simulation Monte Carlo method. The simulation region is a rectangular box with an aspect ratio of
8:8:1, and thenumber of simulation particles is 2.0483107. A hexagonal flow pattern is observed in the
convection state with the Rayleigh number slightly higher than the critical value. It is found that the hexagonal
flow pattern evolves into a roll pattern with an increase in the Rayleigh number. A hysteresis is seen in the
transition between the hexagonal and roll patterns.@S1063-651X~97!12407-2#

PACS number~s!: 02.70.2c, 47.54.1r, 05.70.Ln, 47.20.Bp
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I. INTRODUCTION

The Rayleigh-Be´nard ~RB! system, in which a fluid is
contained between two horizontal parallel walls and the b
tom wall is kept at a higher temperature than the top wall
one of the most representative nonequilibrium hydrodyna
systems. In the RB system, a heat conduction state is e
lished when the temperature difference between the top
bottom walls is smaller than a critical value, while conve
tion rolls appear when the temperature difference exceeds
critical value. Convection in the RB system has been ext
sively studied both experimentally and numerically, and
viewed by Ahlers@1#, and Cross and Hohenberg@2#. Recent
efforts to describe complex spatiotemporal convection p
terns in the RB system were briefly reviewed by Pesch@3#.
The RB convection has been studied using particle sim
tion methods such as the molecular dynamics~MD! method
and the direct simulation Monte Carlo~DSMC! method in
order to study the microscopic behavior of the macrosco
flow. The RB convection was simulated using the M
method by Mareschal and Kestemont@4,5#, and Rapaport
@6#. Mareschalet al. @7#, Puhl, Mansour, and Mareschal@8#,
and Given and Clementi@9# compared the field variables i
the convection rolls obtained by the MD method with t
results by the hydrodynamic calculations. The chaotic m
tion of atoms in the transition between heat conduction
convection was studied using the MD method by Watan
and Kaburaki@10#. Posch, Hoover, and Kum studied the R
problem using the smooth-particle applied mechan
~SPAM!, which is a grid-free particle method for solving th
partial differential equations of fluid or solid mechani
@11,12#. The good agreement between the smooth-part
and the Navier-Stokes results was obtained, and SPAM
shown to be an interesting bridge between continuum
chanics and molecular dynamics@13#. The convection rolls
were also simulated using the DSMC method by Garcia@14#,
and Stefanov and Cercignani@15#. Garcia and Penland@16#
compared velocity distributions in the convection rolls w
the numerical solution of the Navier-Stokes equations. T
transition between conduction and convection was shown
Watanabe, Kaburaki, and Yokokawa using the DSM
method@17#, and the spatial correlations of temperature flu
tuations were shown to grow in the transition@18#. Through
561063-651X/97/56~1!/1218~4!/$10.00
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these studies, the macroscopic flow phenomena in the
system were shown to be simulated qualitatively and qu
titatively using the particle simulation methods. These m
croscopic simulations were, however, performed in a tw
dimensional region with a small aspect ratio, since a la
number of particles are necessary to simulate a th
dimensional flow or even the two-dimensional flow with
large aspect ratio. In this paper, the DSMC method is app
to simulate the RB system in a three-dimensional rectang
box with an aspect ratio of8:8:1. Thetransition between
conduction and convection and the formation of convect
patterns are discussed, and the applicability of the DS
method to macroscopic flow transitions or instabilities
studied.

II. SIMULATION CONDITIONS

In the DSMC method@19#, a large number of molecule
in a real gas are simulated by a smaller number of repre
tative particles. The trajectories of the particles are trace
a short-time interval by decoupling interparticle collision
and the collisions take place on a probabilistic basis. Mac
scopic quantities are obtained by sampling particle proper
in a small volume called sampling cell.

The simulation region is a three-dimensional rectangu
box, which is 44.8 mm in horizontal directions and 5.6 m
in vertical direction, filled with hard sphere particles with
diameter of 3.7310210 m and a mass of 4.8310226 kg.
These particles simulate the average molecule of air.
Prandtl number is estimated to be 0.67 from the Chapm
Enskog theory for spherically symmetrical molecules@20#.
The initial temperature and pressure are assumed to be 8
and 20 Pa, respectively. Under these conditions, the num
density is 1.8131022 m23, the mean free path is 0.091 mm
and the Knudsen number is estimated to be 0.016. The s
lation region is divided into 1603160320 sampling cells. In
our simulation, the collision process of the DSMC method
calculated in the sampling cell. Initially, each sampling c
contains 40 particles, and the number of all simulation p
ticles is 2.0483107. The DSMC program is parallelized an
executed on Intel Paragon with 128 processors. The t
step is chosen to be 0.5 of the mean free time. A samplin
performed in every two simulation time steps, and a flo
1218 © 1997 The American Physical Society
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56 1219PARTICLE SIMULATION OF THREE-DIMENSIONAL . . .
field is obtained by an average of 200 samplings.
The temperature of the bottom wall is slightly increased

time zero from the initial value, and the simulation is pe
formed for thousands of time steps with this temperat
condition. The bottom wall temperature is then slightly i
creased and the simulation is performed again. After the
tom wall temperature reaches a specified value, the sim
tion is performed for tens of thousands of time steps until
steady state flow field is established. The temperature of
top wall is unchanged. In our simulation, the specified val
for the temperature of the bottom wall are 200 K, 300 K, 4
K, 500 K, 700 K, 1000 K, 1400 K, and 1600 K. After th
steady state is obtained for the maximum specified temp
ture, the temperature of the bottom wall is decreased to
smaller specified value, and the simulation is performed u
the steady state is established. In this way, simulations wi
different temperature condition are performed. The diffu
reflection boundary condition, in which a reflected partic
has the velocity components randomly sampled from
Maxwellian distribution corresponding to the surface te
perature, is assumed at the top and bottom walls, while
cyclic boundary condition is applied at the side boundar
The gravitational acceleration is chosen to be a hypothe
value so as to minimize density variations in the heat c
duction state@11#: g5(kBDT)/(mLz), wherekB is the Boltz-
mann constant,DT the temperature difference,m the particle
mass, andLz the distance between the top and bottom wa

III. CONVECTION FLOW FIELD

The maximum flow velocity in the vertical direction i
shown in Fig. 1 as a function of«, where« is defined by
«5(R2Rc)/Rc , R is the Rayleigh number, andRc is the
critical Rayleigh number. The Rayleigh number for this sy
tem is given byR5256/(125p)(DT/T)2(Lz /l)

2 based on
the Chapman-Enskog theory@20#, whereT is the average
temperature andl is the mean free path. The critical Ra
leigh number is defined above which convection states

FIG. 1. Maximum vertical velocity in the steady state as a fu
tion of «5(R2Rc)/Rc , whereR is the Rayleigh number andRc is
its critical value. The data points show a long-time average in
steady state and the error bars indicate the range of data dist
tion. The dashed lines indicate fitting curves of«1/2 for increasing
and decreasing«.
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pear and is determined from the simulation results. T
maximum velocity is normalized by the reference veloci
which is defined as the average thermal speed for the ave
temperature in the system,v*5(8kBT)

1/2/(mp)1/2. The data
points show a long-time average in the steady state.
error bars indicate the range of data distribution due to
statistical simulation conditions such as the number of sim
lation particles and samplings. The standard deviation
however, much smaller than the size of each data point.

In the heat conduction state for«,0, no large-scale flow
is established in the system. The maximum flow velocity
however, not zero in the heat conduction state as show
Fig. 1. The DSMC data in this region show almost the sa
velocity, which does not depend on«. These nonzero veloci
ties are thus due to the statistical simulation conditions. T
maximum flow velocity increases as« increases in the con
vection state for«.0. A hexagonal convection pattern
observed when« is relatively small. It is found, however
that the maximum velocity is suddenly decreased at aro
«50.75 due to the transition of convection states from h
agonal to roll pattern. After the transition, the maximum flo
velocity increases again with« as shown in Fig. 1. If« is
decreased in the convection state with the roll pattern,
roll pattern is observed even at the smaller« than 0.75. In
this condition the maximum flow velocity is smaller than th
observed for increasing«. The transition of convection state
from roll to hexagonal pattern is found at around«50.3. The
hysteresis in the transition of convection states between h
agonal and roll patterns is also observed in the experim
@21,22#.

In a region near the onset of convection, a convect
flow velocity is shown to grow as«1/2 from the perturbation
theory for the hydrodynamic equations@23#. Two fitting
curves of«1/2 to the DSMC results are shown in Fig. 1: on
is for increasing« and the other is for decreasing«. The
good agreement between the microscopic DSMC results
the macroscopic hydrodynamic theory is shown in Fig.
The critical Rayleigh number of this system, which is o
tained from the fitting curves at«50, is about 4400. The
theoretical critical Rayleigh number is, however, given
1708 from the linear stability analysis of the hydrodynam
equations based on the Boussinesq approximation@24#. In
our simulation, the collision process of the DSMC method
calculated in the sampling cell, which is about five tim
larger than the mean free path. It is reported, when the
lision process is calculated in a region smaller than the m
free path, that the transition between conduction and conv
tion is observed at around the hydrodynamic critical Ra
leigh number of 1708@17#. The onset of convection is thu
found to be much influenced by the cell size. The distribut
of the vertical velocity for«50.029 at (y/Ly)50.5 and
(z/Lz)50.5 is shown in Fig. 2. The analytical velocity dis
tribution obtained by the perturbation theory@24# is also
shown. It is found that the good agreement between
DSMC results and the hydrodynamic theory is obtain
again and the convection state is simulated qualitatively w

IV. FLOW PATTERN TRANSITION

Typical patterns of temperature distribution at the mid
evation, (z/Lz)50.5, are shown in Figs. 3~a!–3~f!. The tem-
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peratures are normalized so that the temperatures of the
and bottom walls are 0.0 and 1.0, respectively, and the
thermal contours for the nondimensional temperatures
0.48, 0.54, 0.60, and 0.66 are shown in the horizontal pla
Figures 3~a!–3~d! are obtained during the process of increa
ing «, while 3~e! and 3~f! are for decreasing«. The heat
conduction state for«520.224 is shown in Fig. 3~a!. The
temperature distribution at the midelevation is almost hom
geneous in the heat conduction state and it is indicated
no large-scale flow appears in the system. The convec
state for«50.029 is shown in Fig. 3~b!. The temperature
distribution at the midelevation corresponds clearly to
hexagonal flow pattern. Figures 3~a! and 3~b! are obtained at
the steady state, and the stable hexagonal convection pa
is observed up to«50.680 for increasing«. One of the
transient patterns for«50.842 is shown in Fig. 3~c!. In this
case, the hexagonal convection pattern appears initially
evolves into a roll pattern. The stable roll pattern is obser
in the steady state as shown in Fig. 3~d!. It is found that the
direction of the roll corresponds to one of the directions
the hexagonal pattern shown in Fig. 3~b!. The transient pat-
tern and the steady state for«50.214 are shown in Figs. 3~e!
and 3~f!, respectively, for decreasing«. The roll pattern is
seen to be broken in Fig. 3~e!, and the hexagonal patter
appears again in Fig. 3~f!. For decreasing«, the stable roll
pattern is observed even at«50.463. Although one of the
directions of the hexagonal pattern corresponds to the di
tion of the roll shown in Fig. 3~d!, the location of the hex-
agonal pattern is slightly different from that shown in Fi
3~b!.

The hexagonal and roll flow patterns shown in Figs. 3~b!
and 3~d! are also observed in the experiments under n
Boussinesq conditions@22,25#. In our simulation, the tem-
perature difference between the top and bottom walls
about 114 K for the theoretical critical Rayleigh number, a
the temperature dependence of gas properties is not n
gible. The stability of cellular convection flow and the tem
perature dependence of fluid properties have been discu
by Busse@26#. The Rayleigh numbers corresponding to t
transition from hexagons to rolls and from rolls to hexago
are calculated to be about 5070 and 2840, respectively

FIG. 2. Vertical velocity distribution in the steady state f
«50.029. DSMC results are obtained at (y/Ly)50.5 and
(z/Lz)50.5 ~midelevation! of the simulation region.
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Busse’s method for our simulation conditions. These R
leigh numbers observed in our simulations are about 7
and 5700 from Fig. 1. It is thus found that not only the on
of convection but also the transition of convection patte
are influenced by the simulation cell size.

V. EFFECT OF CELL SIZE

The effect of cell size on the transition between heat c
duction and convection is estimated by performing simu
tions with smaller sampling cells. The simulation region is
rectangular box with an aspect ratio of2:2:1 in this case:
11.2 mm in horizontal directions and 5.6 mm in vertic
direction. The number of sampling cells is 20032003100.
A side length of the sampling cell is thus smaller than t
mean free path, while a diagonal length of the cube is alm
the same as the mean free path. Initial and boundary co
tions are the same as the previous simulations with the la
aspect ratio. The bottom wall temperature ranges from
K–300 K. The number of simulation particles is 1.63108

and the simulations are performed on Intel Paragon w

FIG. 3. Typical temperature distribution at the midelevatio
(z/Lz)50.5, of the simulation region. Isothermal contours for t
nondimensional temperature of 0.48, 0.54, 0.60, and 0.66 are sh
in the horizontal plane:~a! steady state for«520.224,~b! steady
state for«50.029,~c! transient state for«50.842,~d! steady state
for «50.842,~e! transient state for«50.214, and~f! steady state
for «50.214.~a!–~d! are obtained during the process of increasi
«, while ~e! and ~f! are obtained for decreasing«.
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56 1221PARTICLE SIMULATION OF THREE-DIMENSIONAL . . .
256 processors in this case. The time step is 0.4 of the m
free time and a sampling is performed in every three sim
lation time steps, and a flow field is obtained by an aver
of 50 samplings. The time step size and the number of s
plings are slightly smaller than those in the preceding ca

The maximum flow velocity in the vertical direction
which corresponds to Fig. 1 for the case with larger samp
cell, is shown in Fig. 4. The transition between heat cond
tion and convection around«50 and the growth rate of the
flow velocity at «.0 are simulated well. The critical Ray
leigh number, which is obtained as about 1800 in this cas
in good agreement with the theoretical value. The calcula
Rayleigh number also agrees well with that obtained by

FIG. 4. Maximum vertical velocity in the steady state as a fu
tion of «. The DSMC data are obtained by the simulations w
smaller sampling cells. The data points show a long-time averag
the steady state and the error bars indicate the range of data d
bution. The dashed line indicates a fitting curve of«1/2.
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two-dimensional DSMC simulation@17#. Although the tran-
sition of convection patterns is not seen in Fig. 4, it is co
firmed that the onset of convection is influenced by the sa
pling cell size.

VI. SUMMARY

In this paper, the three-dimensional RB conductio
convection system has been simulated using the DS
method. Although several convection patterns are alre
known in the experiments and model calculations@1–3#, we
use the particle simulation method to observe the hexag
and roll patterns and the hysteresis in their transition.

The DSMC method is developed for solving the Bolt
mann equation, and is appropriate for simulating a flow fi
where the Navier-Stokes equations of continuum gas dyn
ics are not valid. Since the DSMC method is a statisti
method, a large number of particles are necessary to ob
transient flow fields especially for three-dimensional simu
tions. Recent development of computers, however, ena
us to simulate various kinds of flow problems using t
DSMC method@19#. This technique is numerically stabl
and easily applied to complicated flow geometries. The fl
tuations of field variables due to the molecular motio
which are associated with macroscopic flow phenom
@18#, are obtained as well as average flow fields. Our res
demonstrate that macroscopic flow transitions and insta
ties are simulated from the molecular level. It is indicat
that the microscopic origin of macroscopic flow phenome
can be studied using particle simulation methods.
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