PHYSICAL REVIEW E VOLUME 56, NUMBER 1 JULY 1997

Particle simulation of three-dimensional convection patterns in a Rayleigh-Bsard system
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The transition of convection patterns in the three-dimensional RayleighBesystem is simulated using
the direct simulation Monte Carlo method. The simulation region is a rectangular box with an aspect ratio of
8:8:1, and thenumber of simulation particles is 2.0480°. A hexagonal flow pattern is observed in the
convection state with the Rayleigh number slightly higher than the critical value. It is found that the hexagonal
flow pattern evolves into a roll pattern with an increase in the Rayleigh number. A hysteresis is seen in the
transition between the hexagonal and roll pattef84063-651X97)12407-2

PACS numbds): 02.70—~c, 47.54+r, 05.70.Ln, 47.20.Bp

I. INTRODUCTION these studies, the macroscopic flow phenomena in the RB
system were shown to be simulated qualitatively and quan-
The Rayleigh-Beard (RB) system, in which a fluid is titatively using the particle simulation methods. These mi-
contained between two horizontal parallel walls and the botcroscopic simulations were, however, performed in a two-
tom wall is kept at a higher temperature than the top wall, iglimensional region with a small aspect ratio, since a large
one of the most representative nonequilibrium hydrodynami®@umber of particles are necessary to simulate a three-
systems. In the RB system, a heat conduction state is estagimensional flow or even the two-dimensional flow with a
lished when the temperature difference between the top arl@rge aspect ratio. In this paper, the DSMC method is applied
bottom walls is smaller than a critical value, while convec-t0 simulate the RB system in a three-dimensional rectangular

tion rolls appear when the temperature difference exceeds tHox with an aspect ratio 08:8:1. Thetransition between
critical value. Convection in the RB system has been extenconduction and convection and the formation of convection
sively studied both experimentally and numerically, and refatterns are discussed, and the applicability of the DSMC
viewed by Ahlerg1], and Cross and Hohenbelg]. Recent Method to macroscopic flow transitions or instabilities is
efforts to describe complex spatiotemporal convection patstudied.

terns in the RB system were briefly reviewed by Pelsih

The RB convection has been studied using particle simula- 1. SIMULATION CONDITIONS
tion methods such as the molecular dynant/d®) method
and the direct simulation Monte Carl®SMC) method in In the DSMC method19], a large number of molecules

order to study the microscopic behavior of the macroscopidn & real gas are simulated by a smaller number of represen-
flow. The RB convection was simulated using the MD tative particles. The trajectories of the particles are traced in
method by Mareschal and Kestemd#dt5], and Rapaport & short-time interval by decoupling interparticle collisions,
[6]. Mareschakt al.[7], Puhl, Mansour, and MarescHd], and the collisions take place on a probabilistic basis. Macro-
and Given and ClemenfB] compared the field variables in SCopic quantities are obtained by sampling particle properties
the convection rolls obtained by the MD method with thein @ small volume called sampling cell.

results by the hydrodynamic calculations. The chaotic mo- The simulation region is a three-dimensional rectangular
tion of atoms in the transition between heat conduction andpox, which is 44.8 mm in horizontal directions and 5.6 mm
convection was studied using the MD method by Watanabé Vertical direction, filled with hard sphere particles with a
and Kaburak{10]. Posch, Hoover, and Kum studied the RB diameter of 3.%x10°*° m and a mass of 4:810 % kg.
problem using the smooth-particle applied mechanicshese particles simulate the average molecule of air. The
(SPAM), which is a grid-free particle method for solving the Prandtl number is estimated to be 0.67 from the Chapman-
partial differential equations of fluid or solid mechanics Enskog theory for spherically symmetrical molecul@$)].
[11,12. The good agreement between the smooth-particldhe initial temperature and pressure are assumed to be 80 K
and the Navier-Stokes results was obtained, and SPAM wadnd 20 Pa, respectively. Under these conditions, the number
shown to be an interesting bridge between continuum medensity is 1.8 K 10> m 3, the mean free path is 0.091 mm,
chanics and molecular dynamif$3]. The convection rolls and the Knudsen number is estimated to be 0.016. The simu-
were also simulated using the DSMC method by Gart#,  lation region is divided into 168 160X 20 sampling cells. In
and Stefanov and Cercigna[ii5]. Garcia and Penlandl6]  our simulation, the collision process of the DSMC method is
compared velocity distributions in the convection rolls with calculated in the sampling cell. Initially, each sampling cell
the numerical solution of the Navier-Stokes equations. Theontains 40 particles, and the number of all simulation par-
transition between conduction and convection was shown bficles is 2.048& 10°. The DSMC program is parallelized and
Watanabe, Kaburaki, and Yokokawa using the DSMCexecuted on Intel Paragon with 128 processors. The time
method[17], and the spatial correlations of temperature fluc-step is chosen to be 0.5 of the mean free time. A sampling is
tuations were shown to grow in the transitigk8]. Through  performed in every two simulation time steps, and a flow
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pear and is determined from the simulation results. The
maximum velocity is normalized by the reference velocity,
which is defined as the average thermal speed for the average
temperature in the system* = (8kgT)¥%(m)Y2. The data
points show a long-time average in the steady state. The
error bars indicate the range of data distribution due to the
statistical simulation conditions such as the number of simu-
lation particles and samplings. The standard deviation is,
however, much smaller than the size of each data point.

In the heat conduction state fer<0, no large-scale flow
is established in the system. The maximum flow velocity is,

however, not zero in the heat conduction state as shown in
Fig. 1. The DSMC data in this region show almost the same
velocity, which does not depend en These nonzero veloci-
ties are thus due to the statistical simulation conditions. The
maximum flow velocity increases asincreases in the con-
FIG. 1. Maximum vertical velocity in the steady state as afunc-VeCtlon state forg>0. A hexagonal anvectlon pattern Is
tion of s = (R—R,)/R,, whereR is the Rayleigh number arR, is observed whers is relatl_vel_y small. It is found, however,
its critical value. The data points show a long-time average in thdhat the maximum velocity is suddenly decreased at around
steady state and the error bars indicate the range of data distribg-=0.75 due to the transition of convection states from hex-
tion. The dashed lines indicate fitting curvesedf? for increasing ~ agonal to roll pattern. After the transition, the maximum flow
and decreasing. velocity increases again with as shown in Fig. 1. It is
decreased in the convection state with the roll pattern, the
field is obtained by an average of 200 samplings. roll pattern is observed even at the smaliethan 0.75. In
The temperature of the bottom wall is slightly increased athis condition the maximum flow velocity is smaller than that
time zero from the initial value, and the simulation is per-observed for increasing. The transition of convection states
formed for thousands of time steps with this temperaturdrom roll to hexagonal pattern is found at arousd 0.3. The
condition. The bottom wall temperature is then slightly in- hysteresis in the transition of convection states between hex-
creased and the simulation is performed again. After the bogonal and roll patterns is also observed in the experiments
tom wall temperature reaches a specified value, the simuld21,22.
tion is performed for tens of thousands of time steps until the In a region near the onset of convection, a convecting
steady state flow field is established. The temperature of thow velocity is shown to grow as'/ from the perturbation
top wall is unchanged. In our simulation, the specified valuegheory for the hydrodynamic equatiof®3]. Two fitting
for the temperature of the bottom wall are 200 K, 300 K, 400curves ofe/2 to the DSMC results are shown in Fig. 1: one
K, 500 K, 700 K, 1000 K, 1400 K, and 1600 K. After the is for increasinge and the other is for decreasing The
steady state is obtained for the maximum specified tempergood agreement between the microscopic DSMC results and
ture, the temperature of the bottom wall is decreased to th#he macroscopic hydrodynamic theory is shown in Fig. 1.
smaller specified value, and the simulation is performed untilChe critical Rayleigh number of this system, which is ob-
the steady state is established. In this way, simulations with tained from the fitting curves at=0, is about 4400. The
different temperature condition are performed. The diffusetheoretical critical Rayleigh number is, however, given as
reflection boundary condition, in which a reflected particle1708 from the linear stability analysis of the hydrodynamic
has the velocity components randomly sampled from thequations based on the Boussinesq approximédtdh In
Maxwellian distribution corresponding to the surface tem-our simulation, the collision process of the DSMC method is
perature, is assumed at the top and bottom walls, while thealculated in the sampling cell, which is about five times
cyclic boundary condition is applied at the side boundarieslarger than the mean free path. It is reported, when the col-
The gravitational acceleration is chosen to be a hypotheticdision process is calculated in a region smaller than the mean
value so as to minimize density variations in the heat coniree path, that the transition between conduction and convec-
duction statg¢11]: g=(kgAT)/(mL,), wherekg is the Boltz-  tion is observed at around the hydrodynamic critical Ray-
mann constantA T the temperature differencen the particle  leigh number of 170817]. The onset of convection is thus
mass, and_, the distance between the top and bottom walls found to be much influenced by the cell size. The distribution
of the vertical velocity fore=0.029 at ¢/L,)=0.5 and
(z/L,)=0.5 is shown in Fig. 2. The analytical velocity dis-
tribution obtained by the perturbation theof24] is also
The maximum flow velocity in the vertical direction is shown. It is found that the good agreement between the
shown in Fig. 1 as a function of, wheree is defined by DSMC results and the hydrodynamic theory is obtained
e=(R—R.)/R;, R is the Rayleigh number, ang. is the again and the convection state is simulated qualitatively well.
critical Rayleigh number. The Rayleigh number for this sys-
tem is given byR=256/(1257)(AT/T)?(L,/\)? based on
the Chapman-Enskog theof0], whereT is the average
temperature and is the mean free path. The critical Ray-  Typical patterns of temperature distribution at the midel-
leigh number is defined above which convection states apevation, ¢/L,)=0.5, are shown in Figs.(8—-3(f). The tem-
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FIG. 2. Vertical velocity distribution in the steady state for
£=0.029. DSMC results are obtained aty/l,)=0.5 and
(z/L,) =0.5 (midelevation of the simulation region.

peratures are normalized so that the temperatures of the to
and bottom walls are 0.0 and 1.0, respectively, and the iso
thermal contours for the nondimensional temperatures of
0.48, 0.54, 0.60, and 0.66 are shown in the horizontal plane
Figures 3a)—3(d) are obtained during the process of increas-
ing e, while 3(e) and 3f) are for decreasing. The heat
conduction state foe=—0.224 is shown in Fig. @). The
temperature distribution at the midelevation is almost homo- el A SN A S S
geneous in the heat conduction state and it is indicated tha | o[%5 5% WL AGE o Em T Ey
no large-scale flow appears in the system. The convectior 0.0
state fore =0.029 is shown in Fig. ®). The temperature
distribution at the midelevation corresponds clearly to the
hexagonal flow pattern. Figure$a® and 3b) are obtained at
the steady state, and the stable hexagonal convection patt
is observed up te=0.680 for increasings. One of the

transient patterns for=0.842 ,'s shown in Fig. @). I_n.t_hls state fore =0.029,(c) transient state foe =0.842,(d) steady state
case, the hexagonal convection pattern appears initially ang, ¢£=0.842, (e) transient state foe=0.214, and(f) steady state

evolves into a roll pattern. The stable roll pattern is observegy, ; — 214.(a)—(d) are obtained during the process of increasing
in the steady state as shown in Figdg It is found that the . \hile (e) and (f) are obtained for decreasing

direction of the roll corresponds to one of the directions of

the hexagonal pattern shown in FighB The transient pat- Busse’s method for our simulation conditions. These Ray-
tern and the steady state for=0.214 are shown in Figs(®  |eigh numbers observed in our simulations are about 7700
and 3f), respectively, for decreasing. The roll pattern is  and 5700 from Fig. 1. It is thus found that not only the onset
seen to be broken in Fig.(&, and the hexagonal pattern of convection but also the transition of convection patterns

appears again in Fig.(8. For decreasing, the stable roll  are influenced by the simulation cell size.
pattern is observed even at=0.463. Although one of the

Qirections of the hexagona_l pattern corresponds to the direc- V. EFFECT OF CELL SIZE
tion of the roll shown in Fig. &), the location of the hex-
agonal pattern is slightly different from that shown in Fig.  The effect of cell size on the transition between heat con-
3(b). duction and convection is estimated by performing simula-
The hexagonal and roll flow patterns shown in Figd)3 tions with smaller sampling cells. The simulation region is a
and 3d) are also observed in the experiments under nonrectangular box with an aspect ratio #f2:1 in this case:
Boussinesq conditiong22,25. In our simulation, the tem- 11.2 mm in horizontal directions and 5.6 mm in vertical
perature difference between the top and bottom walls iglirection. The number of sampling cells is 20200x 100.
about 114 K for the theoretical critical Rayleigh number, andA side length of the sampling cell is thus smaller than the
the temperature dependence of gas properties is not neglrean free path, while a diagonal length of the cube is almost
gible. The stability of cellular convection flow and the tem- the same as the mean free path. Initial and boundary condi-
perature dependence of fluid properties have been discusstdns are the same as the previous simulations with the large
by Busse[26]. The Rayleigh numbers corresponding to theaspect ratio. The bottom wall temperature ranges from 150
transition from hexagons to rolls and from rolls to hexagonsk—300 K. The number of simulation particles is %.&C®
are calculated to be about 5070 and 2840, respectively, bgnd the simulations are performed on Intel Paragon with

FIG. 3. Typical temperature distribution at the midelevation,
e(%LZ):O.S, of the simulation region. Isothermal contours for the
nondimensional temperature of 0.48, 0.54, 0.60, and 0.66 are shown
in the horizontal plane(a) steady state foe = —0.224,(b) steady
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0.30 : , , two-dimensional DSMC simulatiofi7]. Although the tran-
sition of convection patterns is not seen in Fig. 4, it is con-

O ejpcrease firmed that'the onset of convection is influenced by the sam-
——- & “fitting o pling cell size.

0.20 [ - .
P T VI. SUMMARY

In this paper, the three-dimensional RB conduction-
y convection system has been simulated using the DSMC
i ﬂ method. Although several convection patterns are already
-5 -5 known in the experiments and model calculatiphs 3], we
use the particle simulation method to observe the hexagonal
and roll patterns and the hysteresis in their transition.
The DSMC method is developed for solving the Boltz-
0.00.75 05 0.0 05 10 mann equation, and is appropriate for simulating a flow field
€ where the Navier-Stokes equations of continuum gas dynam-
ics are not valid. Since the DSMC method is a statistical
FIG. 4. Maximum vertical velocity in the steady state as a func-method, a large number of particles are necessary to obtain
tion of e. The DSMC data are obtained by the simulations with transient flow fields especially for three-dimensional simula-
smaller sampling cells. The data points show a long-time average itions. Recent development of computers, however, enables
the steady state and the error bars indicate the range of data disttis to simulate various kinds of flow problems using the
bution. The dashed line indicates a fitting curvesdf. DSMC method[19]. This technique is numerically stable
and easily applied to complicated flow geometries. The fluc-
256 processors in this case. The time step is 0.4 of the meaQations of field variables due to the molecular motion,
free time and a sampling is performed in every three simuwhich are associated with macroscopic flow phenomena
lation time steps, and a flow field is obtained by an averageig], are obtained as well as average flow fields. Our results
of 50 samplings. The time step size and the number of sangemonstrate that macroscopic flow transitions and instabili-
plings are slightly smaller than those in the preceding caseties are simulated from the molecular level. It is indicated
The maximum flow velocity in the vertical direction, that the microscopic origin of macroscopic flow phenomena

which corresponds to Fig. 1 for the case with larger samplingan be studied using particle simulation methods.
cell, is shown in Fig. 4. The transition between heat conduc-

tion and convection arounel=0 and the growth rate of the
flow velocity ate>0 are simulated well. The critical Ray-
leigh number, which is obtained as about 1800 in this case, is The authors gratefully acknowledge Mr. Hideki Noguchi
in good agreement with the theoretical value. The calculatedf CRC Research Institute, Inc. for parallelization of the
Rayleigh number also agrees well with that obtained by théSMC program.
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